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Classification of Local Climate Zones Using ASTER
and Landsat Data for High-Density Cities

Yong Xu, Chao Ren, Meng Cai, Ng Yan Yung Edward, and Tianjun Wu

Abstract—The local climate zone (LCZ) scheme provides a stan-
dard method to conduct urban heat island studies, in which urban
landscapes are classified into different LCZs according to urban
structures, land cover, and construction materials. Based on the
LCZ classification scheme, the World Urban Database and Ac-
cess Portal Tools (WUDAPT) is a new initiative to generate LCZ
maps of cities worldwide with the use of freely available Landsat
data. This paper aims to evaluate the performance of the original
WUDAPT method in LCZ mapping for high-density cities. To fur-
ther improve LCZ mapping accuracy for high-density cities, we
investigate the usage of both freely available Landsat and advanced
spaceborne thermal emission and reflection radiometer (ASTER)
satellite data to generate better LCZ mapping results. Experiments
on two high-density Chinese cities, Guangzhou and Wuhan, showed
that combining Landsat and ASTER data can improve the overall
performance of LCZ mapping results, especially for urban areas.
This finding indicates that further applications of the WUDAPT
method for high-density cities can include both ASTER and Land-
sat data.

Index Terms—Advanced spaceborne thermal emission and re-
flection radiometer (ASTER), high-density cities, Landsat, local
climate zone (LCZ), remote sensing, urban areas.

I. INTRODUCTION

THE urban heat island (UHI) effect is regarded as one of
the significant characteristics of urbanization, which is be-

coming more and more important as cities continue to expand
in the 21st century [1], [2]. Although researchers around the
world have conducted UHI studies, there had been no inter-
national standardized research approach for UHI studies until
the local climate zone (LCZ) concept was developed [3]. The
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LCZ system generates a climate-oriented classification of de-
scriptive parameters, including not only a set of representative
parameters to describe local urban morphology but also their
association with a corresponding UHI effect [3]. Due to the
standardized LCZ definition and classification hierarchy, this
new system can be easily adopted in UHI studies and can also
be used for cross-comparison of different UHI studies within
and between cities.

The definition of LCZ is based on actual urban geographical
data, for which buildings, street patterns, and land use and cover
should be collected. However, in some cities, especially in some
developing countries, updated urban structure data are not avail-
able. Satellite data have been exploited to collect urban structure
data [4]–[6]. Based on the LCZ concept, a new initiative called
the World Urban Database and Access Portal Tools (WUDAPT;
http://www.wudapt.org) has been developed to generate LCZ
maps and collect data on urban morphology worldwide [7], [8].
It aims to take advantage of freely available satellite imagery to
classify urban landscapes into several categories according to
a standardized LCZ classification scheme [9]. The WUDAPT
product is not only suitable for urban climate studies, e.g., UHI
assessments [3], it also has great potential for weather, climate,
and air quality applications [10], [11].

Landsat data can achieve promising local climate mapping
results for some European cities, whose urban morphology com-
plies well with the standard LCZ definitions [9], [12]. However,
one recent study [13] showed that the accuracy for LCZ map-
ping for Kyiv, Ukraine, is only about 64%, which might reflect
that LCZ mapping results for some cities might not be as good
as expected; this may also be true for some dense and highly
compact Asian cities [14]–[16]. To get better results, efforts
have been made to combine synthetic aperture radar (SAR) and
Landsat data to achieve better mapping accuracy [12]. Never-
theless, preliminary testing results have indicated that addition
of SAR textural data did not significantly improve the final LCZ
mapping result, although the use of SAR data might be useful
in directly deriving urban height information [12].

Advanced spaceborne thermal emission and reflection ra-
diometer (ASTER) data have a higher spatial resolution than
Landsat data and are now freely available. Thus, in this study,
we aim to investigate the use of both ASTER and Landsat data
to generate better LCZ mapping results for high-density Asian
cities. Two large Chinese cities, Guangzhou and Wuhan, were
chosen as case studies.

The reminder of this paper is organized as follows. In
Section II, a review of LCZ is provided. A remote
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sensing−based LCZ classification approach is introduced in
Section III. Section IV shows case studies. The results for the
two Chinese cities are given in Section V. Discussions and some
conclusions are presented in Sections VI and VII.

II. REVIEW OF LCZ

UHI are one of the most important issues of urban climates.
Previous urban climate studies have mainly focused on the ex-
tent and magnitude of UHI based on urban–rural classifications.
A review study [17] showed that most of the previous urban
climate studies lacked quantitative metadata of site exposure
and land cover. Thus, the measurements, site descriptions, and
assessments of UHI have no uniform standard or objective proto-
col as a basis for comparison, which affects the value of previous
urban climate studies for practical usage [3]. In this situation, a
novel urban land use classification was proposed [18] to guide
UHI studies, and later, better urban morphology classification
methods based on building shapes and materials and street con-
figurations were further developed [19].

However, the above effects on urban land use classification
still lacked a quantitative standard to define each category [3]. In
2012, a new urban structure classification system, the LCZ sys-
tem, was developed to support urban climate studies [3]. In this
system, urban structures are classified into 17 standard classes,
including 10 urban classes and 7 natural classes (shown in Ta-
ble I above). Each class was defined strictly with a set of standard
parameters, including land use or cover, building construction
and materials, and human activities, including anthropogenic
heat, which can provide a standard method to conduct urban
climate studies.

III. REMOTE SENSING–BASED LCZ
CLASSIFICATION APPROACH

Because it is a fast and efficient means to provide land surface
data for large areas, satellite technology has been extensively
used in retrieving data on urban structures [4]–[6]. Based on the
LCZ concept, WUDAPT was first proposed in 2012 to collect
precise urban morphology data and activity data globally and
to provide data suitable for climate science in a straightforward
way and with free and open software and data [7], [9], [13].

A simple and straightforward LCZ mapping procedure using
freely available Landsat data has been proposed [9]. The same
procedure was revised for this study to include both Landsat and
ASTER data as inputs. As shown below in Fig. 1, the improved
LCZ classification approach has four main steps.

First, both Landsat and ASTER data in the study area were
downloaded from the U.S. Geological Survey (USGS), prepro-
cessed, and resampled at a resolution of 30 m. Both the spectral
and textural features of the Landsat and ASTER data were used
as input data.

Second, training areas for different LCZ types were selected
via the Google Earth platform to ensure high quality. The selec-
tion principle was in accordance with the standard definition of
each LCZ category.

TABLE I
STANDARD LCZ CLASSES [3], EXAMPLES FROM CHINESE CITIES

Third, based on the acquired Landsat and ASTER data and
training areas, a random forest (RF) classification method was
used to generate a local climate map.

Finally, the generated LCZ map with a spatial resolution of
30 m was resampled to 120 m according to the requirement
of urban climate studies [9], [20]. An external independent test
dataset was used to assess the overall accuracy (OA) of the
generated local climate maps.

IV. CASE STUDY

A. Study Area

Two large cities in China were selected for our study:
Guangzhou and Wuhan. Their locations are shown in Fig. 2.
Guangzhou is the capital of Guangdong province in southern
China. It is located in the northern part of the Pearl River Delta,
facing the South China Sea, near Hong Kong and Macau. It has
a permanent population of 13.5 million and covers an area of
7434 km2. It is the largest city in southern China and the third
largest in China. It has a subtropical monsoon climate and an
annual average temperature of 20 to 22 °C.

Wuhan is the capital of Hubei province in central China. It
has a population of 10 million and covers an area of 8494 km2.
The Yangtze and Hanjiang Rivers divide the city into three parts
called Wuchang, Hankou, and Hanyang. Wuhan belongs to the
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Fig. 1. Procedure of remote sensing–based LCZ classification approach.

Fig. 2. Locations of Wuhan and Guangzhou in China.

north subtropical monsoon zone, with hot summers and cold
winters, high humidity, and poor overall comfort.

Due to their rapid urbanization and high population density,
both cities suffer from hot summers with extremely high tem-
peratures. In addition, they are prosperous and still undergo-
ing rapid urbanization. Temperature studies for both cities have
shown that the urban areas have significantly higher tempera-
tures than the rural areas, indicating that they both experience
an obvious UHI [21]–[25]. Hot weather and an intensified UHI
worsen the thermal environment and pose a serious threat to
their citizens’ health.

These two cities were chosen for two other reasons. First, both
cities are large, and high-density cities in China; Guangzhou,
for example, is the third-largest city in China and has an ex-
tremely dense and compact urban morphology. Thus, both cities
reflect the complexity of urban landscapes for large cities in
China. Second, we are familiar with both cities and have local

Fig. 3. LCZ mapping results for Guangzhou using spectral and textural fea-
tures from Landsat and ASTER data. (a) Satellite data, training areas (high-
lighted in yellow), and validation areas (highlighted in blue); (b) LCZ result.

Fig. 4. LCZ mapping results for Wuhan using spectral and textural features
from Landsat and ASTER data. (a) Satellite data, training areas (highlighted in
yellow), and validation areas (highlighted in blue); (b) LCZ result.

knowledge of the urban structures, which could benefit us in the
selection of appropriate training and validation areas to conduct
the study.

B. Input Data

Landsat and ASTER land surface reflectance data products
for both Guangzhou and Wuhan were collected from the USGS.
For Guangzhou, we used one Landsat image from 2014 (Oc-
tober 15, 2014) and two ASTER images from 2014 and 2016
(October 7, 2014, and July 8, 2016), and for Wuhan, we used one
Landsat image from 2014 (October 6, 2014) and two ASTER
images from 2013 (October 11, 2013). All acquired satellite
data had undergone geometric correction. For the Guangzhou
study area, the ASTER satellite data were projected onto the
WGS84/UTM zone 49N coordinate system to ensure that the
ASTER data were consistent with the coordinate system of the
acquired Landsat data. For the Wuhan study area, both Landsat
and ASTER data were projected onto the WGS84/UTM 50N
coordinate system. After geometric correction, the ASTER im-
ages for both study areas were mosaicked into larger areas. The
same area was then cropped from both datasets and used to test
the proposed approach; Figs. 3(a) and 4(a) show the cropped
areas with satellite data for both study areas of Guangzhou and
Wuhan.
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TABLE II
FEATURE SETS, INCLUDING NAME, FEATURES USED, AND NUMBERS OF

FEATURES

Set name Features No.

AST ASTER [Bands 1–3] 3
AST +
GLCM

ASTER [Bands 1–3] + GLCM [Mean,
Variance, Homogeneity, Contrast,
Dissimilarity, Entropy, Second moment,
Correlation]_PC1

11

LT8 Landsat 8 [Bands 1–7, 10–11] 9
LT8 + GLCM Landsat 8 [Bands 1–7, 10–11] + GLCM

[Mean, Variance, Homogeneity, Contrast,
Dissimilarity, Entropy, Second moment,
Correlation]_PC1

17

LT8 + AST Landsat 8 [Bands 1–7,10–11]+ ASTER
[Bands 1–3]

11

All AST + GLCM, LT8 + GLCM 28

To provide a comprehensive understanding of both Landsat
and ASTER data in generating the LCZ mapping result, both
spectral and texture features from Landsat and ASTER data
were used and compared. The spectral features included bands
1−7 and 10−11 of the Landsat 8 data and bands 1−3 of the
ASTER data. The textural features included eight gray-level
co-occurrence textures (GLCM), representing mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment,
and correlation. The GLCM toolbox provided by commercial
ENVI software was used generate all of the textural features on
the basis of the first principal component of both Landsat and
ASTER data. Given that the Landsat and ASTER data have a
spatial resolution of 30 and 15 m, respectively, the used window
sizes for calculating GLCM features for Landsat and ASTER
data are 5 ∗ 5 and 7 ∗ 7, respectively.

As shown in Table II, six different combinations of features
of Landsat or ASTER or both datasets were tested. The six
testing feature sets included two sets based on multispectral
features using either Landsat or ASTER data (LT8 and AST),
two sets based on multispectral and texture information from
either Landsat or ASTER data (LT8 + GLCM, AST + GLCM),
one set based on the combined spectral information from both
Landsat and ASTER data (LT8 + AST), and one set based on the
combined spectral and texture information from both Landsat
and ASTER data (All).

Moreover, the input of the proposed LCZ classification ap-
proach also included training areas, which were manually
selected with Google Earth. Figs. 3(a) and 4(a) show the
distribution of the selected training areas (highlighted in yel-
low) and validation areas (highlighted in blue), and Table III
shows details of the training areas in both study areas, including
the number of polygons and the number of pixel-based (30 m
∗ 30 m) training samples per LCZ. For some LCZ classes, the
number of training samples is small because the actual propor-
tion of the corresponding class is rather small.

C. Classifiers

Three different classifiers were used to compare the perfor-
mance of different feature sets in the generation of LCZ maps.
The classifiers include multilayer perceptron neural network
(NN), support vector machine (SVM), and RF.

TABLE III
TRAINING AREAS FOR GUANGZHOU (GZ) AND WUHAN (WH)

Number of
Training Areas

Number of Training
Samples (30 m ∗ 30 m)

GZ WH GZ WH

LCZ1:Compact high-rise 14 23 1226 629
LCZ2: Compact mid-rise 27 18 1824 1412
LCZ3: Compact low-rise 20 20 2609 2533
LCZ4: Open high-rise 22 17 3779 2701
LCZ5: Open mid-rise 22 26 1700 3734
LCZ6: Open low-rise 10 13 1360 3030
LCZ7: Lightweight 10 10 1209 1521
LCZ8: Large low-rise 16 14 3246 2571
LCZ9: Sparse low-rise 6 8 311 347
LCZ10: Heavy industry 8 8 459 3729
LCZ A: Dense trees 10 9 4661 2726
LCZ B: Scattered trees 10 12 604 3049
LCZ C: Bush, scrub 8 8 477 728
LCZ D: Low plants 9 17 2966 7809
LCZ E: Bare rock or paved 9 12 312 1053
LCZ F: Bare soil or sand 5 14 267 3902
LCZ G: Water 10 15 3256 26 837

The NN classifier is a feed-forward NN, in which standard
back-propagation was used to train the weights of nodes in each
layer. The nodes of the input layer correspond to the number of
standard features, whereas the nodes of the output layer reflect
the classification result. The nodes of hidden layers were empir-
ically set as the mean nodes of the input and output layers. Each
node of the network has an activation function to show its ability
to transfer the information from input to output, which reflects
that the responsibility of different nodes in processing different
information and that all nodes work together to generate a final
classification result.

The SVM classifier projects the original data into high-
dimensional space to make them linearly separable. It is similar
to the NN method, but instead, a kernel function was used to
work as a hidden layer to separate the original data in a high-
dimensional feature space. The output of SVM is the classifica-
tion result.

The RF classifier can be considered as an extension of a con-
ventional decision tree classifier. By reconstructing an ensem-
ble of decision trees, a final classification result was conducted
by integrating all results of different trees by voting. The RF
classifier has good prediction accuracy and computation effi-
ciency. Moreover, it can show the importance of input features
by comparing different classification results with and without
permuting features in a random way. Thus, the RF classifier
implemented in open-source SAGA GIS software was used to
conduct this study. As recommended in [12], the two param-
eters of RF, including the number of trees and the variable of
the node, were given default values of 32 and the square root
of the number of features for better memory management and
computation efficiency of the SAGA software.

D. Performance Evaluation

To assess the prediction accuracy, independent validation data
were manually selected via Google Earth, and double checked
via Baidu 3D street map (www.baidu.com). Four quality indices,
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TABLE IV
VALIDATION AREAS FOR GUANGZHOU (GZ) AND WUHAN (WH)

Number of
Validation Areas

Number of Validation
Samples (120 m ∗ 120 m)

GZ WH GZ WH

LCZ1:Compact high-rise 6 12 40 23
LCZ2:Compact mid-rise 5 7 24 38
LCZ3:Compact low-rise 7 6 39 34
LCZ4: Open high-rise 8 13 40 40
LCZ5: Open mid-rise 7 12 37 40
LCZ6: Open low-rise 5 4 33 40
LCZ7:Lightweight 6 7 16 40
LCZ8: Large low-rise 10 10 40 40
LCZ10: Heavy industry 3 3 40 40
LCZ A: Dense trees 6 3 40 40
LCZ B: Scattered trees 5 8 11 17
LCZ D: Low plants 5 6 40 40
LCZ E: Bare rock or paved 9 N/A 34 N/A
LCZ F: Bare soil or sand N/A 8 N/A 40
LCZ G: Water 7 4 40 40

TABLE V
OA AND KAPPA INDICES OF LCZ MAPPING RESULTS USING DIFFERENT

COMBINATIONS OF FEATURES WITH DIFFERENT APPROACHES AT GUANGZHOU

STUDY AREA

Classifier NN RF SVM

Feature sets OA Kappa OA Kappa OA Kappa

AST 46 0.42 56 0.53 47 0.43
AST + GLCM 51 0.46 61 0.58 53 0.49
LT8 61 0.60 62 0.59 63 0.60
LT8 + GLCM 59 0.56 62 0.59 64 0.61
LT8 + AST 59 0.56 64 0.62 63 0.60
All 61 0.59 66 0.64 67 0.64

including the OA, the user accuracy (UA), the producer accuracy
(PA), and the kappa index, were used in this study. The OA
reflects the OA of correction classification. UA refers to the
proportion of correct classified pixels of a certain class divided
by the predicted number of this class. PA refers to the proportion
of correct classified pixels of a certain class divided by the
total number of corresponding reference classes. The kappa
index summarizes all different prediction errors into a single
index. By comparing the generated LCZ map with the validation
samples, a confusion matrix can be calculated, based upon which
all indices can be obtained. Table IV shows the number of
validation areas and the number of validation samples with the
scale of the final LCZ map (120 m ∗ 120 m). To reduce the
flaws of standard kappa in interpretation [26], the number of
validation samples for different classes were kept at the same
level, except for a few classes that did not have enough validation
samples.

V. RESULTS

A. LCZ Mapping Results of Guangzhou and Wuhan

For comparison, the accuracy of the LCZ mapping results
with three classifiers and six feature sets were given. Tables V
and VI show the OA and kappa indices for all results in both
Guangzhou and Wuhan study areas; from these tables, we can

TABLE VI
OA AND KAPPA INDICES OF LCZ MAPPING RESULTS USING DIFFERENT

COMBINATIONS OF FEATURES WITH DIFFERENT APPROACHES AT WUHAN

STUDY AREA

Classifier NN RF SVM

Feature Sets OA Kappa OA Kappa OA Kappa

AST 31 0.26 66 0.63 50 0.46
AST + GLCM 55 0.51 71 0.69 64 0.61
LT8 70 0.67 81 0.79 77 0.75
LT8 + GLCM 72 0.69 81 0.79 77 0.75
LT8 + AST 72 0.69 82 0.80 80 0.78
All 77 0.75 84 0.83 84 0.83

see that the use of all spectral and textural features using both
Landsat and ASTER data (All) achieved the best result, regard-
less of which classifier is adopted. RF and SVM both performed
slightly better than the NN approach when both datasets were
used, which indicates that both RF and SVM can be used for
LCZ mapping tasks when multisource satellite data were used.
The RF classifier is fast and efficient in generating LCZ maps,
so it was used in this study to conduct LCZ mapping. Unless
otherwise specified, the RF classifier was used in the remainder
of this paper.

Based on the RF method, Fig. 3(b) shows the LCZ mapping
result for Guangzhou, based on the spectral and textural in-
formation from both Landsat and ASTER data. It is apparent
that the center of Guangzhou, in the northern part of the image
(marked in red), is well classified as compact building settle-
ments (LCZs 1–3). Except for the Guangzhou city center, some
clusters with red color can be seen in the south and southwest
of Guangzhou, which represent several satellite cities, such as
Foshan and Shunde. Other than LCZs 1–3, some open building
settlements marked in orange (LCZs 4–6) are located in the sub-
urbs of each city. In addition, some large low-rise buildings with
light colors can be seen in the middle of several cities. Although
some samples that reflect heavy factory and sparse buildings are
collected and used in this study, few locations are correctly clas-
sified into these two categories. Other than the area with urban
types, most of the remaining areas are classified as low plants
(LCZ D) and dense trees (LCZ A), highlighted in light green
and dark green, respectively. This distribution is consistent with
the actual land cover distribution as viewed with high-resolution
imagery from Google Earth.

Fig. 4(b) shows the LCZ mapping result for Wuhan, based on
spectral and textural information from both Landsat and ASTER
data using the RF classifier. Compared with Guangzhou, Wuhan
has fewer compact building settlements, as the majority of the
center of Wuhan was classified as open buildings (LCZs 4–
6) and only part of center area was classified as high-compact
buildings (LCZs 1–3). In the suburbs of Wuhan, some large
low-rise buildings with a light gray color and some sparsely
distributed lightweight low-rise buildings with a yellow color
can be seen. Other than urban classes (LCZs 1–10), most of
the natural classes (LCZs A–F) in Wuhan are classified as low
plants, with few areas of dense trees. Wuhan has less dense trees
than Guangzhou.
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TABLE VII
CONFUSION MATRIX FOR GUANGZHOU LCZ MAPPING RESULT USING

LANDSAT AND ASTER DATA (ALL)

TABLE VIII
CONFUSION MATRIX FOR WUHAN LCZ MAPPING RESULT USING LANDSAT

AND ASTER DATA (ALL)

B. Accuracy and Performance Analysis

Two indices, the OA and the kappa coefficient, were used
to assess the final LCZ mapping results by comparing them
with actual independent validation data. Table VII shows the
validated results for Guangzhou, for which an OA of 66% was
obtained with a kappa coefficient of 0.64. When we looked at the
producer and UA for the results for Guangzhou, it was found
that urban types had a relatively lower accuracy than natural
types. For example, LCZ 1 for Guangzhou had a low PA of
0.55, whereas LCZ A, which reflects dense trees, has a high PA
of 100%.

Table VIII gives the validation results for Wuhan, for which
an OA of 84% and a kappa coefficient of 0.83 were obtained.
The main reason for the higher accuracy than Guangzhou is that

TABLE IX
ACCURACY STATISTICS FOR GUANGZHOU LCZ MAPPING RESULTS USING

DIFFERENT FEATURES FROM EITHER LANDSAT OR ASTER OR BOTH DATASETS

Feature set Natural Types
(LCZs A-F)

Urban Types
(LCZs 1-10)

All LCZs

OA (%) Kappa OA (%) Kappa OA (%) Kappa

AST 90 0.87 52 0.45 56 0.53
AST + GLCM 81 0.75 56 0.50 61 0.58
LT8 94 0.92 61 0.55 62 0.59
LT8 + GLCM 92 0.89 61 0.56 62 0.59
LT8 + AST 92 0.89 64 0.59 64 0.62
All 93 0.90 65 0.60 66 0.64

TABLE X
ACCURACY STATISTICS FOR WUHAN LCZ MAPPING RESULTS USING

DIFFERENT FEATURES FROM EITHER LANDSAT OR ASTER OR BOTH DATASETS

Feature set Natural Types
(LCZs A-F)

Urban Types
(LCZs 1–10)

All LCZs

OA (%) Kappa OA (%) Kappa OA (%) Kappa

AST 87 0.84 64 0.59 66 0.63
AST + GLCM 86 0.82 72 0.69 71 0.69
LT8 88 0.85 81 0.78 81 0.79
LT8 + GLCM 89 0.88 80 0.77 81 0.79
LT8 + AST 91 0.89 81 0.79 82 0.80
All 92 0.90 83 0.81 84 0.83

Guangzhou is much denser than Wuhan, which caused large
prediction errors for urban types. With the generated LCZs, for
example, Guangzhou had poor LCZ prediction results for urban
types; the PA for LCZs 4–6 for Guangzhou were 45%, 46%, and
33%, respectively, and the same indices for Wuhan were 100%,
95%, and 65%, respectively.

In addition to the validation with independent testing data,
training data were also used to validate the modeling accuracy
using the RF classification method. The testing results show that
both cities have extremely high modeling accuracy, with an OA
of 0.98 for Guangzhou and 0.99 for Wuhan, which indicates that
the prediction errors for both cities were mainly caused by the
use of satellite data instead of the model.

VI. DISCUSSIONS

A. Advantages of Proposed Approach

The OA and kappa indices for the results based on the RF clas-
sifier using different sets of features are provided in Tables IX
and X. To better compare the performance of different features
in generating LCZ types with more details, the results for two
major LCZ categories, including urban types (LCZs 1–10) and
natural types (LCZs A–F), are also given.

Table IX shows the OA and kappa indices for all results
for Guangzhou based on different features using Landsat and
ASTER data. Columns 2 and 3 give the accuracy statistics for
natural landscapes, and columns 4 and 5 show the accuracy
statistics for urban types; the OA and kappa coefficients for
all LCZ types are provided in columns 6 and 7. Similarly, the
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Fig. 5. Gini importance of features from both Landsat and ASTER data.

accuracy statistics for the LCZ results of Wuhan are provided
in Table X.

Based on the accuracy statistics provided in Tables IX and
X for Guangzhou and Wuhan, three main findings can be sum-
marized. First, the use of all spectral and textural features using
both Landsat and ASTER data (All) achieved the best result; the
OA indices for Guangzhou and Wuhan based on the RF clas-
sifier were 66% and 84%, respectively, which are better than
the results with other feature sets. Second, the Landsat data out-
performed the ASTER data when only spectral features were
used, whether for urban LCZ types or for natural LCZ types.
By combining both spectral and textural features, incorporation
of the textural features of the ASTER data can achieve a better
prediction result than the use of ASTER spectral data alone.
However, the improvement seen by adding the textural features
of the Landsat data is not significant, possibly due to the rela-
tively lower spatial resolution of the Landsat data. Third, when
the performances of different features were compared on the
basis of two main LCZ types, including urban types and natural
types, it was found that all features performed better in predict-
ing natural types than urban types. In Guangzhou for example,
the OA for all results for natural types were above 80%, but
the results for all urban types were below 70%, which might
indicate that one significant issue of the proposed method is that
it still has limitations in differentiating urban LCZ types.

B. Important Features in LCZ Mapping

The Gini importance from the RF classifier is adopted in
this study because this index reflects the importance of dif-
ferent features. Based on the Gini importance value, the im-
portant spectral and textural features from both Landsat and
ASTER data for discriminating different LCZ classes can be
determined.

Fig. 5 shows the Gini importance of all features in the gen-
eration of LCZ results for both study areas. By fitting a curve
with the Gini importance values of all features for both study
areas, it is apparent that some spectral and textural features from
both ASTER and Landsat data have distinct peak values, such
as spectral bands 4 and 5 and textural feature GLCM1 of Land-
sat data, which indicates that both spectral and textural features
from ASTER and Landsat data contribute to the final results.

These features work together to generate the final LCZ results.
Compared with both case studies, we found that Wuhan had
two dominant features, including bands 7 and 10 of the Landsat
data, but Guangzhou achieves five important features, including
the spectral bands 1, 5, and 10 and the GLCM mean texture of
the Landsat data and band 2 of the ASTER data. This difference
might indicate that the situation of Guangzhou is more complex
than that of Wuhan for LCZ mapping. Thus, it requires more
features to differentiate some LCZ types.

We also note some relatively important spectral features for
LCZ mapping of both study areas, like bands 5 and 10 of the
Landsat data. These features correspond to the near-infrared,
and thermal bands of both sets of satellite data. The importance
of these features can be explained by their good representation
of the main structures of different LCZ types (e.g., vegetation
and thermal emissivity). The importance of the textural features
is relatively weaker than that of the above-mentioned spectral
features, but some important textural features still might work
together to achieve better LCZ mapping results. The relatively
important textual features are GLCM mean and dissimilarity
textures of different LCZ types. This finding indicates that both
textural features from other high-resolution satellite datasets
(e.g., sentinel-2) might also be helpful in differentiating some
LCZ types in complex urban scenarios.

C. Further Improvements

The proposed approach using Landsat and ASTER data is
easy to implement and can achieve promising LCZ mapping
results. Our experimental results show that the proposed ap-
proach using both datasets could achieve promising LCZ map-
ping results for both Guangzhou and Wuhan, with OA of 66%
and 84%, respectively, which are better than the results from
a conventional approach (62% and 81%). These results were
consistent with a similar study for Kyiv, Ukraine, in which the
OA using Landsat data was 64% [13]. Nevertheless, when the
results were assessed for two major LCZ categories, includ-
ing urban types and natural types, it was found that the overall
prediction accuracy for urban types is still unsatisfactory. For
Guangzhou, for example, the overall prediction accuracy for ur-
ban types was 65%. The OA for urban types for Wuhan (83%)
was much better than that for Guangzhou. The main reason
might be that Guangzhou is much denser and more complex
than Wuhan, which caused the difficulty in differentiating urban
types. This result also reflects that high-density urban areas are
likely to have low LCZ mapping accuracy. Although the addi-
tion of textural information from both Landsat and ASTER data
with the proposed approach can improve mapping accuracy, it
is still necessary to investigate the addition of more satellite
data (e.g., Interference SAR data) to help differentiate complex
urban structures, which is vital for high-density and compact
cities like Guangzhou.

In addition to the accuracy issue for high-density urban areas,
training samples observed from high-resolution imagery have
extra errors that might affect the final LCZ mapping result and
lower the value of its applications. Given this situation, a stan-
dard training database at the continent or country level might



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

be a solution to eliminate the effects of the training samples for
applications with different groups of people.

VII. CONCLUSION

The LCZ classification system provides a standard method to
support urban climate studies—UHI analysis. On the one hand,
as the input data of some urban climate models, high-quality
LCZ mapping result can generate high-quality simulation result.
On the other hand, a better LCZ mapping result gives a better
understanding of the urban thermal environment, which can
benefit in the development of effective migration measures for
urban climate issues.

This paper investigated the use of both Landsat and ASTER
data in the generation of high-quality LCZ mapping results. Ex-
perimental results from two high-density Chinese cities showed
that the proposed approach using both spectral and textural in-
formation from both Landsat and ASTER data can achieve much
better results than the conventional LCZ mapping method us-
ing only spectral information from Landsat data. The overall
prediction accuracies for Guangzhou and Wuhan were 66% and
84%, respectively, which were better than those of conventional
method, which had overall accuracies of 62% and 81%. When
comparing Landsat with ASTER data for generating LCZ maps,
the Landsat data outperformed the ASTER data because the
Landsat data contain much more spectral information than the
ASTER data.

The performance of different features in generating LCZ
maps was also compared. It is found that the proposed approach
with all features (All) performed the best, followed by the fea-
tures LT8 + AST, LT8 + GLCM, LT8, AST + GLCM, and,
finally, AST. The experimental results confirm that the addition
of textural information could actually improve the overall pre-
diction accuracy, especially for urban types. This finding also
indicates that the combination of spectral and textural informa-
tion is vital for the generation of high-quality LCZ mapping
results for large, dense cities.

The testing results also show that the OA for urban LCZ
types is still a challenging issue. In particular, high-rise highly
compact areas had large prediction errors because different ur-
ban types in high-density areas are prone to be mixed together.
Thus, the addition of building height information (e.g., interfer-
ence SAR data, or Open Street Map) to differentiate complex
urban LCZ types for high-density cities is an important topic
for further study.
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